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HNC-Type Approximation for Transport Processes 
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On the basis of the diffusion approach in the theory of transport processes of 
electrolytic solutions we introduce a "direct correlation force" as a generaliza- 
tion of the direct correlation function in equilibrium. Starting from an approxi- 
mation for the three-particle distribution function we derive a HNC (hyper- 
netted chain)-type equation for calculation of binary distribution functions in 
nonequilibrium. The derivation is consistent with equilibrium theory. 
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1. INTRODUCTION 

The equilibrium HNC-equation for the two-particle distribution function 
Fab is perhaps the best existing approximation which describes interionic 
structure and therefore the excess properties of electrolytic solutions. (o Fa b 
(12) denotes the probability of finding an ion of species a in the volume 
element dr 1 and the ion of species b in dr 2 which is given by 

Fab(1,2) dr 1 dr 2 V-2 

Comparison with Monte Carlo studies indicates that the HNC-distribution 
function is relatively correct and yields good thermodynamic functions 
from strong to moderately associating electrolytes at all solute concentra- 
tions. The success of the HNC approximation in equilibrium strongly 
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suggests the analog of HNC for transport processes should be con- 
structed. (z'3) Our approach is based on (a) the diffusion approximation for 
the BBGKY hierarchy (4-8) and (b) the definition of a nonequilibrium direct 
correlation force in the framework of the diffusion approximation. (7-9~ 

2. THE DIRECT CORRELATION FORCE IN THE DIFFUSION 
APPROXIMATION 

Let us consider an isothermal electrolyte. The diffusion flow of parti- 
cles of species a is then given by 

Ja = na(eaE + Krf + K;t)/Ra (1) 

where n a denotes the particle density N, , /V ,  e a their electric charge, E the 
external electric field, and Kra el the relaxation force and K] 1 the electropho- 
retie force, which are given by 

K r e l ( l )  = - -  ~bnbfVl+~b(12)Fab(12)dr2 (2) 

K~l(1) = R ~ ]  nb f L~b " (ebE + Kab)Fab dr 2 (3) 
b 

Kba(12) = - V~p~(12)  - ~ n c f V ~ % ( 1 3 ) ( F . b ~ ( 1 2 3 ) / F ~ b ( 1 2 ) )  dr3 (4) 

Here ~ab is the potential of average force between two ions at infinite 
dilution which we assume to be known. Lab is the electrophoretic or friction 
tensor, (3'5'8'1~ and Kba the mean interionic force, which contains the three- 
particle distribution function Fab c. R a is a friction coefficient. 

For the p.d.f, we may write the continuity equation 

(~/Ot)Fab + 7, .j~ + V 2.j~, = 0 (5) 

where jb is the mean flow of ions of species a at r 1 assumed that the ion b is 
fixed at r 2. In the diffusion approximation jb a is given by (neglecting 
hydrodynamic couplings) 

jb = Fabuojnonb = (~oFab + Fab~ba __ k T V I F ~ b ) / R  ~ (6) 

Here K a is the effective external force, taking into account the feedback of 
relaxation force and given by 

Ka = eaE + K ~  el ( 7 )  

This relaxation force we subtract from the mean interionic force Kb~ 

- - b  b rel K a = K a - K a ( 8 )  

This interaction contribution is the most complicated part of the vector 
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flow field (6) because it contains the three-particle distribution Fab c. There- 
fore it is necessary to consider a full hierarchy of flow equations (51 together 
with the corresponding continuity equations. In order to get a formal closed 
system of equations which can be solved, e.g., by Fourier transforms, let us 
define an effective force, the direct correlation force Cab, by 

-b f FabK a = Cab + ~, n c Cachcb dr 3 (9) 
c 

Introducing this definition in Eq. (6) the two-particle flow can be expressed 
by Cab : 

s = (RaF~b- kTVlUab + Cab + Z,cfCach bdr3)/ea (10) 

This equation is the nonequilibrium analog of the Ornstein-Zernike rela- 
tion. The pair-correlation function hab = Fab -- 1 and the direct correlation 
force are in the diffusion approximation connected by the continuity 
equation: 

(O/Ot)hab=V,'(kTVlhab--Cab--~ncfCachcbdr,--(1 +hab)Ra)/Ra 

+ V2" (a <--) b, 1 <--->2) (11) 

In equilibrium rot Cab = 0 and therefore we can write 

COb = kTV c~ (12) 

where cob is the well-known direct correlation function. In this case from 
(10) follows the Ornstein-Zernike relation: 

haO= o E f o o (13) Cab + t'l c dr 3 ca~hcb 
c 

( K f  is zero in that case.) 
Therefore our definitions are consistent with the equilibrium direct 

correlation formalism. 
In order to formulate the appropriate boundary conditions for the 

problem (11) at small distances let us assume that the potential possesses a 
hard core; 

Lpa b = VAb "a t- Nab , V~b = ce, if r < Rab 

V~b=O, if r > R a b  

Then the Fuoss-Kelbg boundary conditions r ead  

�9 b 2 (rl -- r2) �9 [la( , 1) - j~(1,2)] = 0, if [r, - r2[ = Rab (14) 

It is easy to find a formal solution of (11) by Fourier transforms. To 
simplify the calculations we restrict the considerations to binary electrolytes 
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and weak external fields ( K  a = eaE ). Therefore we have in this case 

hob = ha ~ + hlb, Cab = kTVcffb + Clb (15) 

where hJb and Clab are the first deviations from the equilibrium functions. 
Furthermore, we find in the stationary case (a/3t)F~b = 0 

h ~ l = h l 2 = 0  and C111=C12=0 

With this relations Eq. (11) can be solved in Fourier space. The result is 

h~2(k ) = [(elw , -- e2w2)h~ 

+ I I  + w,n2h~ w2nlh~ . k f l / I k 2 D ( k ) l  (16) 

Here are 

D ( k )  = 1 - n , w , c ~  n2w2c~ 

and 

w, = R 2 / ( R  , + R2), w 2 = R , / ( R ,  + R2), fl = 1 / k r  

The formal solution given here will satisfy the boundary conditions if the 
integration constant in CI~b is chosen in an appropriate way. This is not a 
trivial task. 

The problem in this theory is to find Cab, which means we have to 
solve equation (9) in a given approximation for the average force Kb a or 
Fob c. Let us first study the limit of very small concentrations. In this limit 
we have 

and find from (9) 

Ka--b = -- Vt~a b + O(n)  

Cab = - ( 1  + hab)V~ab (17) 

with the equilibrium solution 

cob = exp(-- fl+~b) -- 1 (18) 

For the deviations from equilibrium we get 

Cl.b = h2bV(-  +ab) (19) 

The boundary condition has in the limit of small concentrations the simple 
form 

(~ / Or)h ~2( r, O ) = f lEexp(-f l t~12)cosv~(elRl-  e2R2) / ( R 1 + R2) , 

if r =  R 1 2 = R  (20) 

This very simple relation may be used as a zeroth approximation to the 
condition (14) even at finite (not-too-large) concentrations. 
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In order to demonstrate the whole procedure let us give finally the 
solution in the limit of small densities which satisfies the boundary condi- 
tions. We obtain (6) 

h ~2(r, ~ ) = exp [ - fl V;2 (r) ] (e I - e2) fiE 

• cos0( (T  + 1)(exp(1/r)(1 - 2r) + 1 + 2 r ) / ( T -  1) 

+ exp(1/r)(1 + 2r) - 1 - 2r ) /8  (21) 

T = e x p ( - b ) ( l + b + b 2 / 2 ) ,  l = - e , e 2 f l / D  o, b = I / R  
(22) 

BC'12(r, ) = hh(r, )l" r / ;  

The well-known Onsager solution for h~b which is obtained in the case 
ARab--~ 0 (~b = e~eb/Dor) follows from Eq. (16) with the further relations 

o cob=-/  ob and (Ref. 14) 

3. THE CLOSURE RELATION 

In order to get higher approximations in the calculation of the direct 
correlation force, we have to look for closure relations for the hierarchy of 
distribution functions. This means tractable approximations for Fabc(rl,r2, 
r3) in terms of pair-distribution functions or equivalently a second relation 
between Cab and Fab. Let us first use a simple procedure which is based on 
the analogy to equilibrium HNC theory where the closure relations reads 

cOb = FOb - -  1 - l n F  ~ - fl~ab (23) 

By a formal extension of this relation to nonequilibrium we would obtain 

flCab = Vhab- Vln(1 + hab ) --flV~a b = VCab (24) 

However, this equation cannot be correct for two reasons: (1) It implies a 
direct correlation force free of rotational parts (rot Cab = 0). (2) Equation 
(24) is in evident contradiction to (19), because in the limit n~ ~ 0 it follows 
fi'om (24) that 

flClab = V ( hlab[ 1 - -  exp(fl~&b) ]} (25) 

Let us consider now a more satisfactory statistical derivation of HNC 
approximations for transport processes which is based on a paper by 
Verlet (12) on the HNC approximation for equilibrium distribution func- 
tions. 

In order to do this we have for a given approximation for g a b  c and 
therefore for ~b to solve Eq. (9). We use an approximation for Fab c which 
can be obtained from the Meeron-Salpeter representation of F~b C in a 
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cluster series of two-particle distributions ( 13): 

Fabc= FabFbcFac(l + ~a nd f dr4hadhbdhcd + " " " ) (26) 

Now we introduce the approximation (26) in the definition of K] by Eq. (8) 
and get 

Fab(12)Kba(12) 

= F~b(12)[-- Vl+~b(12)] + F~b(12) ~ncfdr3hbc(23) 

• [ - Vl~ac(13) ] r,,~(13 ) 

+ ~andfdr4 Fad(14)[- Vl~P~d(14 )]h~c(13)hac(43)Fbd(24)) (27) 

Using this approximation in Eq. (9) we get 

C~b(12) + ~n~(dr3Cac(13)h~b(32 ) 
C J 

= - V1,o~(12)Fab(12) 

+ F.~(12) ~n~fdr3 F~A 13)[-  Vl~a~(13)]F~A23 ) 

+ Fa~(12)~ncndffdr3dr4Fad(14)[- Vl~od(14)] 

• ha~(13)hac (43)hb~(23)Fbd(24) (28) 

In addition we use in the n 2 term the approximations F~b = 1 and Fba = 1. 
Then the following solution can be obtained: 

C~b(12 ) = -- V ,t)ab(12)F~b(12 ) 

+ hab(12)~n~fdr3[-Vl~p~(13)]F~c(13)hb~(23 ) (29) 

F~b(12)K ~ = - V~tP~b(12)F~b(12 ) + F~b(12 ) ~ n~fdr3 C~(13)hbc(23 ) (30) 

- -b  It is easy to eliminate K~ with the help of Eq. (9). The result is then 

Cab = --Vl~PabFab "Jr h~b~c ncf  dr3Ca~hbc (31) 

Equation (31) is the nonequilibrium analog of the HNC closure. As we can 
verify immediately from Eqs. (12) and (13) follows in the equilibrium case 
directly Eq. (23). But we may derive this result also in another way: 
Utilizing the nonequilibrium Ornstein-Zernike relation" (10), we get a useful 
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relation for the two-particle flow without integral terms: 

(Ra ub - Ka)hab = Cab - -  kTV1Fab + kTV~lnFab + Vl~ab (32) 

This equation is a second relation between hab and Cab which may be used 
instead of Eq. (31). Together with the equation of continuity (11) and the 
nonequilibrium Ornstein-Zernike equation (10) we get a closed system of 
equations for the determination of the correlation functions h,b of the ions 
in electrolyte solutions in nonequilibrium situations. To get (23), we have to 

b = Ka = 0 in equilibrium. Then take into account (12) and the fact that u a 
integrating (32) and recall from the boundary conditions at infinity that the 
integration constant must be zero, we arrive at the equilibrium HNC 
closure. Still we have to answer the question how the boundary conditions 
(14) or (20), respectively, can be satisfied. This is possible at least in two 
ways: 

(i) The Fourier transform in Eq. (16) is chosen in such a way that the 
boundary condition (b.c.) is fulfilled, i.e., an appropriate integration path- 
way is to be found. 

(ii) The normal Fourier transform with the usual pathway of integra- 
tion is used; however, a homogeneous solution of the following equation, 

(0/0')h~2(12) = V 1 " ( -  ~ 1 h ~ 2 ( 1 2 ) - t - , , f d r 3  ~71c~ 1 

+ V2 " ( -  V2h~(2l)+ n2fdr 3 V2c~ 2 (33) 

is added to Eq. (16). The stationary solution with the appropriate symmetry 
reads 

h~2(k ) = [ (elw I - e2w2)cE, k ] / [  k2D(k) ] (34) 

where c is a free constant which may be used to fit the b.c. We note that in 
this approach the MSA discussed earlier (9) is obtained by the assumption 
C12 ~ 0. 

4, CONCLUSIONS 

This paper is devoted to the problem of finding a nonequilibrium 
analog of the well-known HNC approximation in equilibrium. This prob- 
lem has no unique solution, we have presented here one possibility which 
seems to be the most natural extension of the equilibrium relations. A 
general solution of the problem stated in Eqs. (10), (11), and (31) or (32) 
with the b.c. (14) requires considerable numerical effort and should be 
fulfilled with the help of fast Fourier transforms as in equilibrium.(0 Only 
in the limit of small densities explicit answers are found in an analytical 
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way. Calculations in both directions are in progress. We will report about 
the results in a following paper. 
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